#7. 次数2の積分まとめ
便利メモ/数学/懐石メニュー  Share on Twitter

\(G\)はカタラン定数です。
\(\ln z\)の偏角は,\(-\pi <\arg z\leq \pi \)とします。

基本的な不定積分

$$ \begin {aligned} \int \frac {\ln x}{x-a}dx &=\ln \left (1-\frac {x}a\right )\ln x+\operatorname {Li} _2 \left (\frac {x}a\right )+Const. \end {aligned} $$
$$ \begin {aligned} \int \frac {\ln x}{x-a}dx &=\ln \left (1-\frac {x}a\right )\ln x-\int \frac {\ln \left (1-\frac {x}a\right )}{x}dx\\ &=\ln \left (1-\frac {x}a\right )\ln x+\operatorname {Li} _2 \left (\frac {x}a\right )+Const. \end {aligned} $$

一番単純なやつ

$$ \begin {aligned} \int _{0}^{1}\frac {\ln x}{1-x}dx&=-\frac {\pi ^{2}}6\\ \int _{0}^{1}\frac {\ln x}{1+x}dx&=-\frac {\pi ^{2}}{12}\\ \int _{0}^{1}\frac {\ln x}{1-x^{2}}dx&=-\frac {\pi ^{2}}8\\ \int _{1}^{\infty }\frac {\ln x}{1-x^{2}}dx&=-\frac {\pi ^{2}}8\\ \int _{0}^{1}\frac {\ln x}{1+x^{2}}dx&=-G\\ \int _{1}^{\infty }\frac {\ln x}{1+x^{2}}dx&=G\\ \int _{0}^{1}\frac {x\ln x}{1-x^{2}}dx&=-\frac {\pi ^{2}}{24}\\ \int _{0}^{1}\frac {x\ln x}{1+x^{2}}dx&=-\frac {\pi ^{2}}{48} \end {aligned} $$
$$ \begin {aligned} \int _{0}^{1}\frac {\ln x}{1-x}dx &=-\left [\ln x\ln (1-x)+\operatorname {Li} _2 (x)\right ]_0^1\\ &=-\operatorname {Li} _2 (1)\\ &=\textcolor {blue}{-\frac {\pi ^{2}}6}. \end {aligned} $$
$$ \begin {aligned} \int _{0}^{1}\frac {\ln x}{1+x}dx &=\left [\ln x\ln (1+x)+\operatorname {Li} _2 (-x)\right ]_0^1\\ &=\operatorname {Li} _2 (-1)\\ &=\textcolor {blue}{-\frac {\pi ^{2}}{12}}. \end {aligned} $$
$$ \begin {aligned} \int _{0}^{1}\frac {\ln x}{1-x^{2}}dx&=\frac {1}2\left (\int _{0}^{1}\frac {\ln x}{1-x}dx+\int _{0}^{1}\frac {\ln x}{1+x}dx\right )\\ &=\frac {1}2\left (-\frac {\pi ^{2}}6-\frac {\pi ^{2}}{12}\right )\\ &=\textcolor {blue}{-\frac {\pi ^{2}}8}.\\ \int _{1}^{\infty }\frac {\ln x}{1-x^{2}}dx&=\int _{0}^{1}\frac {\ln x}{1-x^{2}}dx\\ &=\textcolor {blue}{-\frac{\pi ^{2}}{8}}. \end {aligned} $$
$$ \begin {aligned} \int _{0}^{1}\frac {\ln x}{1+x^{2}}dx &=\Im \int _{0}^{1}\frac {\ln x}{x-i}dx\\ &=\Im \left [\ln x\ln (1+ix)+\operatorname {Li} _2 \left (-ix\right )\right ]_0^1\\ &=\Im \operatorname {Li} _2 (-i)\\ &=\textcolor {blue}{-G}.\\ \int _{1}^{\infty }\frac {\ln x}{1+x^{2}}dx &=-\int _{0}^{1}\frac {\ln x}{1+x^{2}}dx\\ &=\textcolor {blue}{G}. \end {aligned} $$

複雑なやつ

$$ \begin {aligned} \int _{0}^{1}\frac {\ln (1+x)}{1+x^{2}}dx &=\frac {\pi \ln 2}8 \\ \int _{0}^{\infty }\frac {\ln (1+x)}{1+x^{2}}dx &=\frac {\pi \ln 2}4+G \end {aligned} $$
$$ \begin {aligned} \int _{0}^{1}\frac {\ln (1+x)}{1+x^{2}}dx &=\int _{0}^{\frac {\pi }4}\ln (1+\tan x)dx\\ &=\int _{0}^{\frac {\pi }4}\ln \left (1+\tan \left (\frac {\pi }4-x\right )\right )dx\\ &=\int _{0}^{\frac {\pi }4}\ln \left (1+\frac {1-\tan x}{1+\tan x}\right )dx\\ &=\int _{0}^{\frac {\pi }4}\ln 2dx-\int _{0}^{\frac {\pi }4}\ln (1+\tan x)dx\\ &=\frac {1}2\int _{0}^{\frac {\pi }4}\ln 2dx\\ &=\textcolor {blue}{\frac {\pi \ln 2}8}. \end {aligned} $$
$$ \begin {aligned} \int _{0}^{\infty }\frac {\ln (1+x)}{1+x^{2}}dx &=\frac {1}\pi \Im \int _{0}^{\infty }\frac {(\ln x+\pi i)\ln (1+x)}{1+x^{2}}dx\\ &=\frac {1}\pi \Im \int _{-\infty }^{0}\frac {\ln (x+0i)\ln (1-x)}{1+x^{2}}dx\\ &=\frac {1}\pi \Im \left (2\pi i\underset{z=i}{\operatorname{Res}}\frac {\ln z\ln (1-z)}{1+z^{2}}-\int _{0}^{\infty }\frac {\ln x\ln (1-x-0i)}{1+x^{2}}dx\right )\\ &=\frac {1}\pi \Im \left (\pi \cdot \frac {\pi i}2\left (\frac {\ln 2}2-\frac {\pi i}4\right )\right )+\frac {1}\pi \int _{1}^{\infty }\frac {\ln x\cdot \pi }{1+x^{2}}dx\\ &=\textcolor {blue}{\frac {\pi \ln 2}4+G}. \end {aligned} $$
これ、積分区間を\(\int_0^1\)と\(\int_0^\infty \)に分けて一つ目の積分を使った方が自然なのかもしれないけど、まあいいや

三角関数絡み

$$ \begin {aligned} \int _{0}^{\frac {\pi }2}\ln (1+\sin x)dx &=2\beta (2)-\frac {\pi \ln 2}2 \end {aligned} $$
$$ \begin {aligned} \int _{0}^{\frac {\pi }2}\ln (1+\sin x)dx &=\int _{0}^{\frac {\pi }2}\ln \sin xdx+\int _{0}^{\frac {\pi }2}\ln \left (\frac {1}{\sin x}+1\right )dx\\ &=-\frac {\pi \ln 2}2+2\int _{0}^{1}\ln \left (\frac {1+x^{2}}{2x}+1\right )\frac {dx}{1+x^{2}}\\ &=-\frac {\pi \ln 2}2+4\int _{0}^{1}\frac {\ln (1+x)}{1+x^{2}}dx-2\int _{0}^{1}\frac {\ln 2+\ln x}{1+x^{2}}dx\\ & =-\frac {\pi \ln 2}2+\frac {\pi \ln 2}2-\frac {\pi \ln 2}2+2\beta (2)\\ &=\textcolor {blue}{2\beta (2)-\frac {\pi \ln 2}2}. \end {aligned} $$